

Identify the impacts and risks of climate change to public ports on the Brazilian coast, and to offer general recommendations of adaptation measures.

21 PUBLIC COASTAL PORTS

- Angra dos Reis;
- Aratu-Candeias;
- Cabedelo;
- Fortaleza;
- Ilhéus;
- Imbituba;
- Itaguaí;
- Itajaí;
- Itaqui;
- Natal;
- Niterói;

- Paranaguá;
- Recife;
- Rio Grande;
- Rio de Janeiro;
- Salvador;
- Santos;
- São Francisco do Sul;
- São Sebastião;
- Suape;
- Vitória.

Prepared	by:	WayCarbon,	GIZ,	ANTAQ	(2021)	
----------	-----	------------	------	-------	--------	--

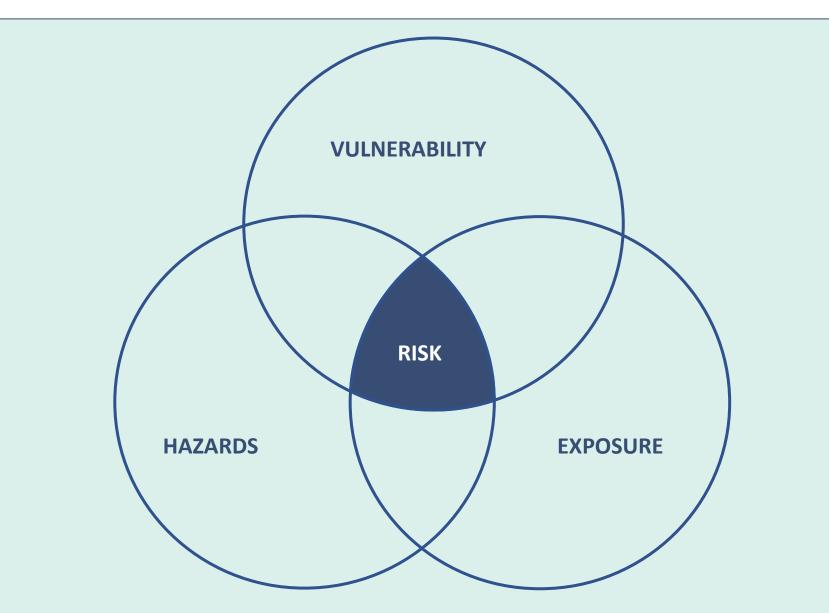
D	Porto	ID	Porto
1	Itaqui	12	Rio de Janeiro
2	Fortaleza	13	Itaguaí
3	Natal	14	Angra dos Reis
4	Cabedelo	15	São Sebastião
5	Recife	16	Santos
6	Suape	17	Paranaguá
7	Aratu	18	São Francisco do Sul
8	Salvador	19	Itajaí
9	Ilhéus	20	Imbituba
10	Vitória	21	Rio Grande
11	Niterói		

América do Sul

CRS: 4674 - Geodésico Datum: Sistema de Referência Geocêntrico para as Americas 2000 Meridiano: Greenwich Fonte: Elaboração Própria. Dados: ANTAQ, IBGE

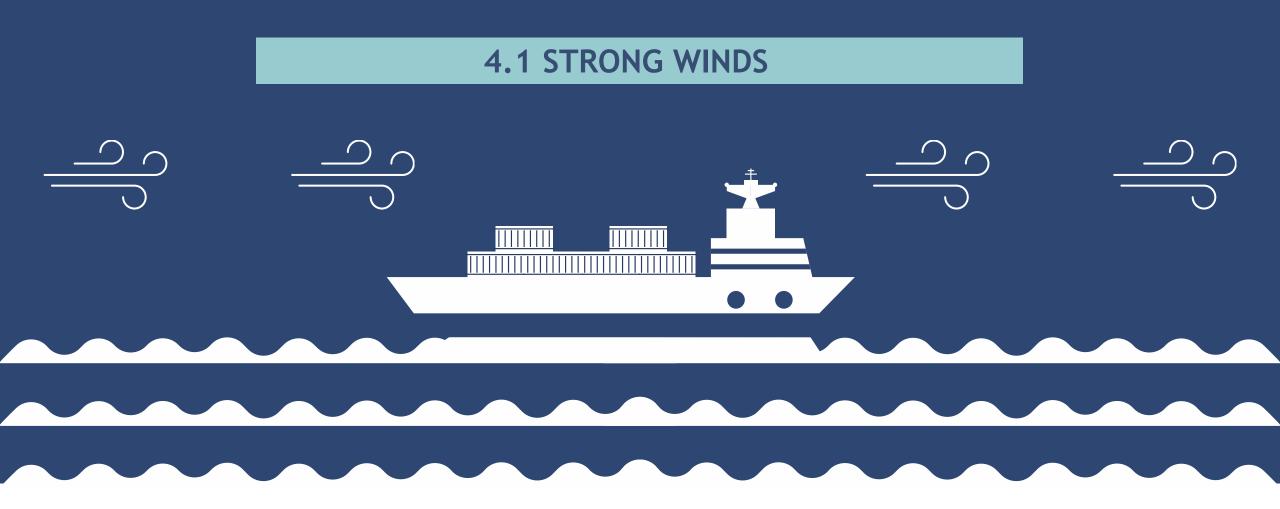
3. METHODOLOGY

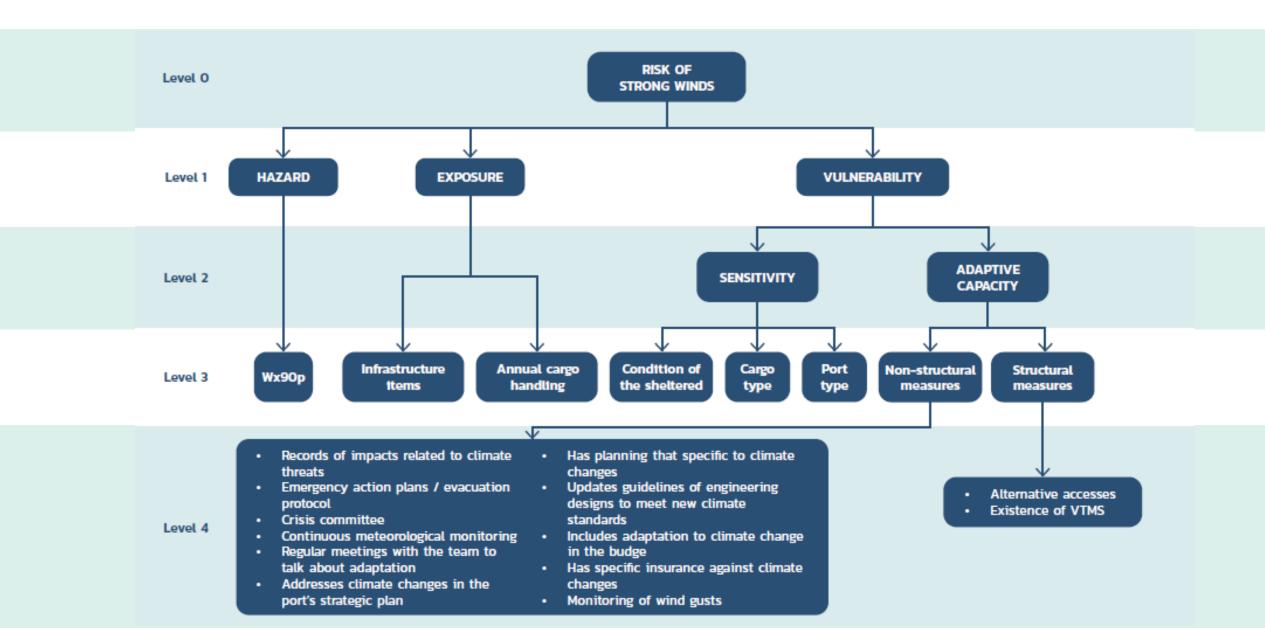
CLIMATE HAZARDS SELECTED

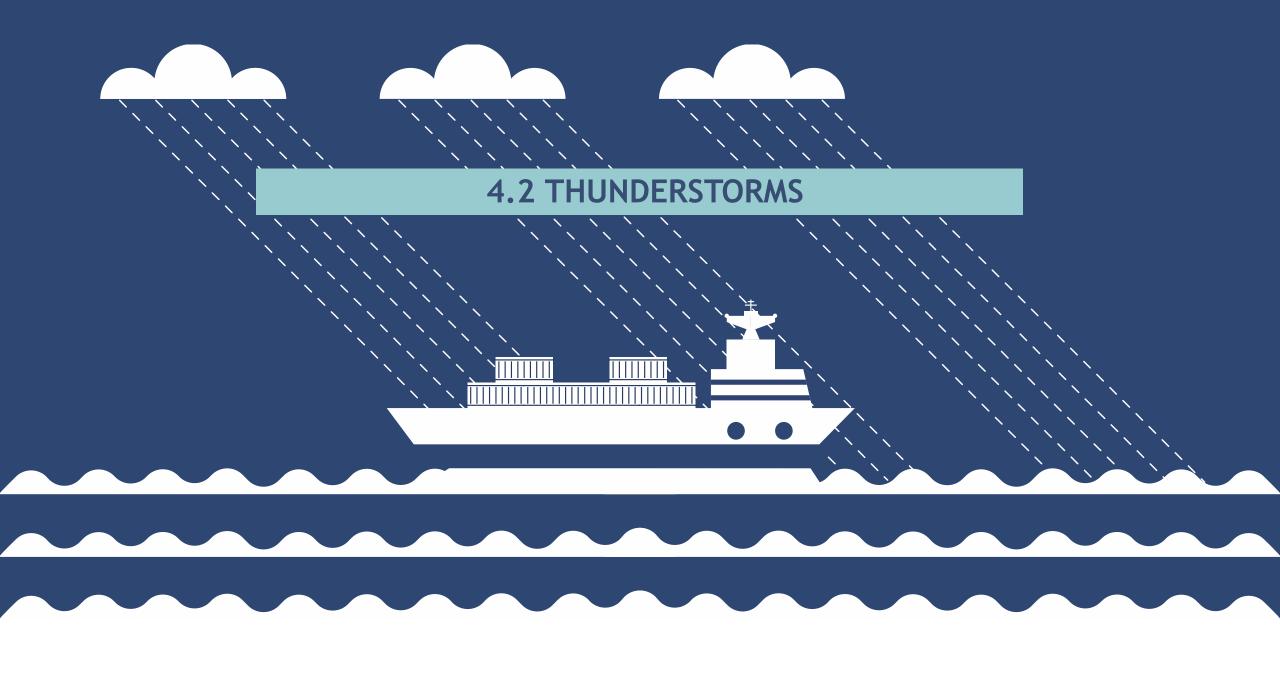


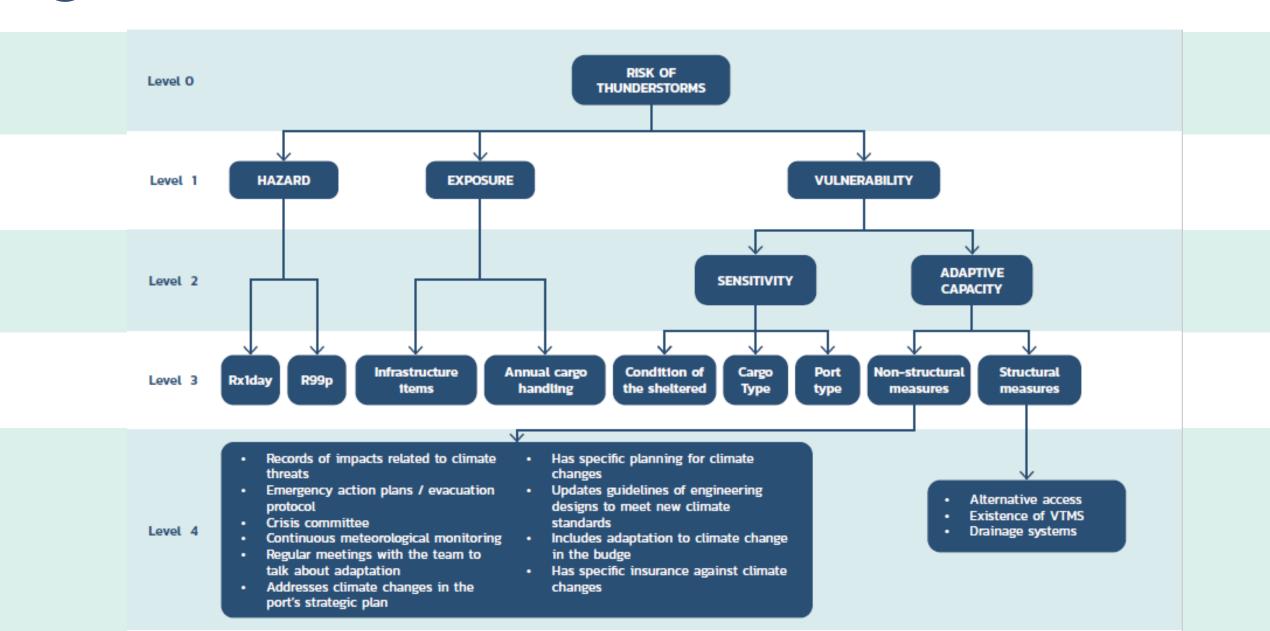
STRONG WINDS

THUNDERSTORMS

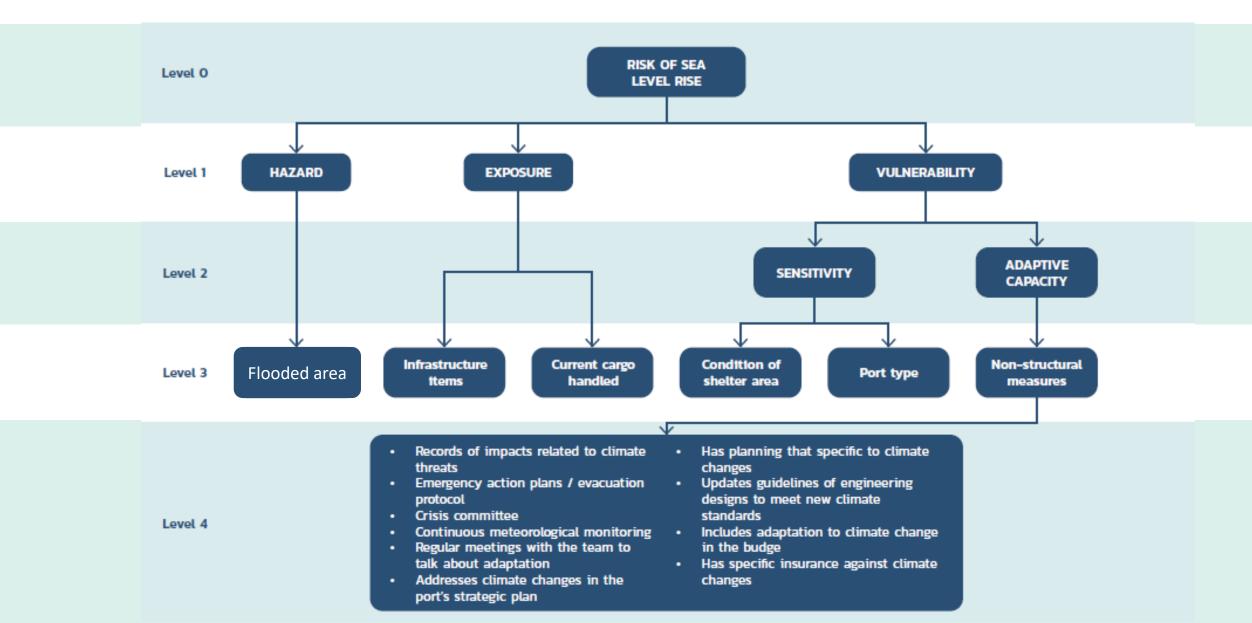

SEA LEVEL RISE



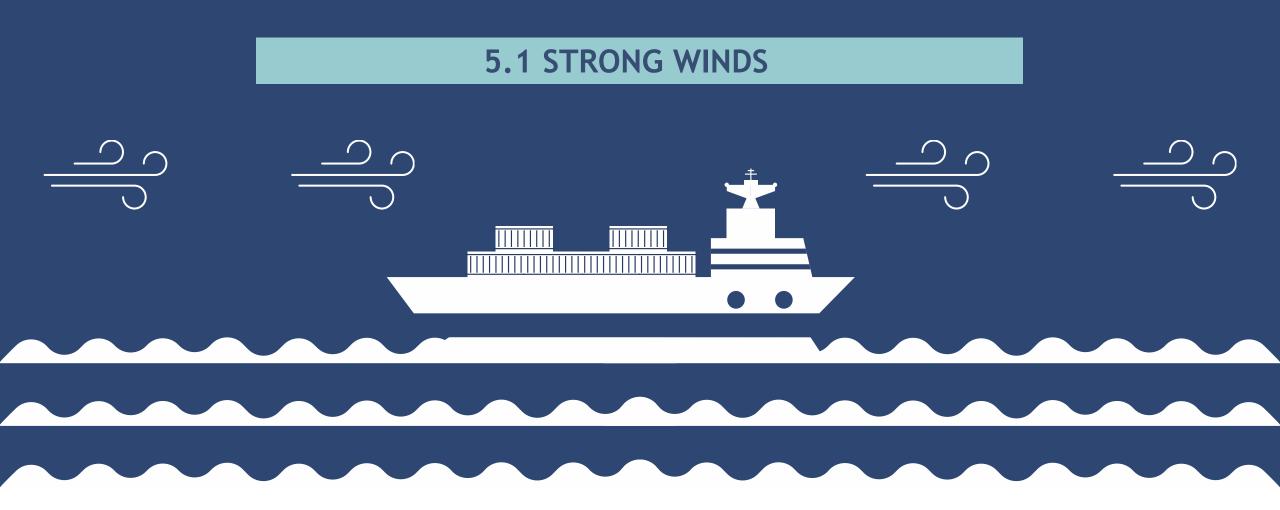



8

IPCC (2014)



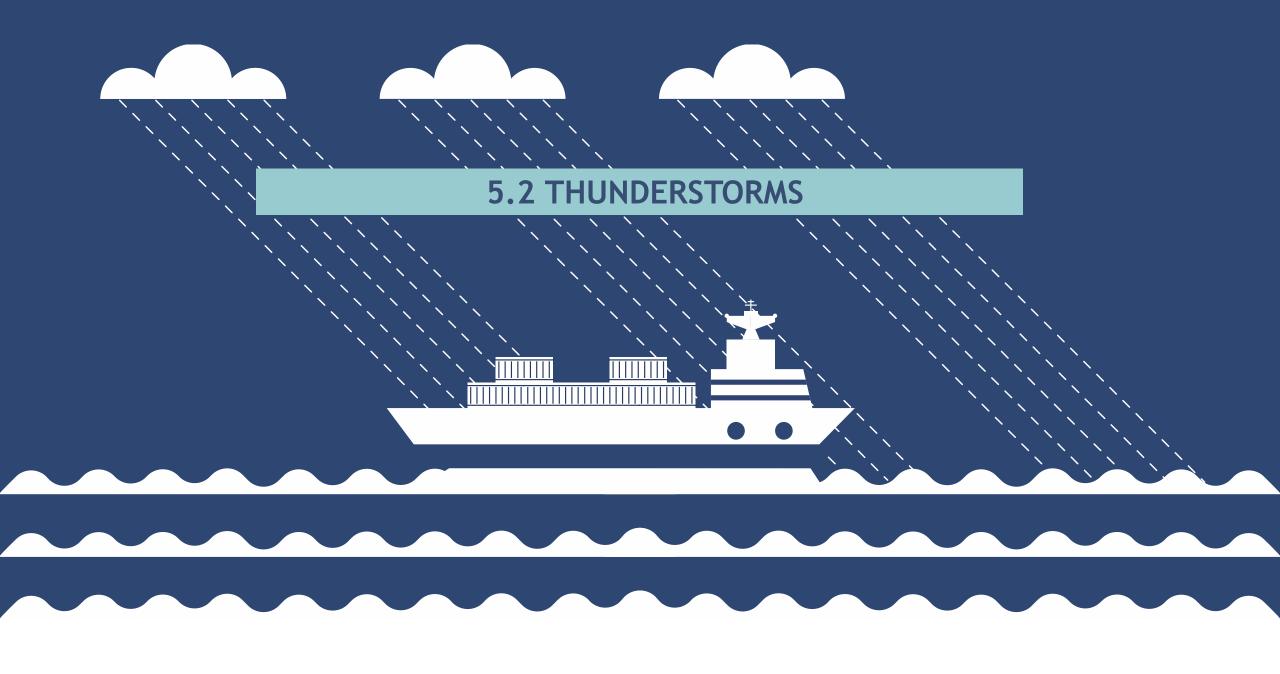



4.3 SEA LEVEL RISE $\bullet \quad \bullet$

RESULTS - RISK INDEX FOR STRONG WINDS

					RCP4.5				RCP8.5			
Port	E	V	U	Obs.		30	20	50	2030		20	50
			Α	Ř	Α	Ř	Α	Ř	Α	Ř	Α	Ř
Angra dos Reis	0,5	0,5	0,6	0,364	0,7	0,397	0,7	0,440	0,7	0,406	0,8	0,449
Aratu-Candeias	0,8	0,4	0,6	0,496	0,7	0,578	0,8	0,599	0,8	0,615	0,9	0,723
Cabedelo	0,7	0,5	0,6	0,445	0,7	0,568	0,8	0,617	0,8	0,604	1,0	0,737
Fortaleza	0,6	0,6	0,6	0,534	0,7	0,638	0,8	0,692	0,7	0,662	0,8	0,754
Ilhéus	0,5	0,7	0,6	0,595	0,7	0,663	0,7	0,703	0,7	0,699	0,8	0,789
Imbituba	0,6	0,8	0,6	0,761	0,6	0,776	0,7	0,804	0,7	0,799	0,7	0,835
Itaguaí	0,7	0,6	0,6	0,618	0,7	0,670	0,7	0,747	0,7	0,696	0,8	0,764
Itajaí	0,6	0,4	0,6	0,334	0,6	0,345	0,7	0,350	0,7	0,351	0,7	0,361
Itaqui	0,8	0,3	0,6	0,426	0,7	0,487	0,8	0,525	0,8	0,536	0,9	0,580
Natal	0,7	0,5	0,6	0,467	0,8	0,607	0,8	0,681	0,8	0,643	1,0	0,802
Niterói	0,4	0,5	0,6	0,324	0,6	0,351	0,7	0,388	0,7	0,369	0,7	0,400
Paranaguá	0,9	0,5	0,6	0,634	0,7	0,686	0,7	0,717	0,7	0,695	0,7	0,741
Recife	0,7	0,7	0,6	0,728	0,7	0,840	0,7	0,873	0,7	0,872	0,8	1,000
Rio de Janeiro	0,8	0,5	0,6	0,581	0,6	0,628	0,7	0,694	0,7	0,660	0,7	0,715
Rio Grande	0,9	0,5	0,6	0,698	0,7	0,721	0,7	0,741	0,7	0,719	0,7	0,737
Salvador	0,7	0,7	0,6	0,676	0,7	0,771	0,7	0,794	0,8	0,813	0,9	0,944
Santos	1,0	0,5	0,6	0,733	0,7	0,777	0,7	0,842	0,7	0,796	0,7	0,857
São Francisco do Sul	0,6	0,6	0,6	0,592	0,7	0,626	0,7	0,638	0,7	0,631	0,7	0,661
São Sebastião	0,6	0,6	0,6	0,532	0,7	0,562	0,7	0,614	0,7	0,582	0,7	0,629
SUAPE	0,9	0,4	0,6	0,494	0,7	0,560	0,7	0,575	0,7	0,579	0,8	0,653
Vitória	0,8	0,3	0,6	0,288	0,7	0,333	0,8	0,377	0,8	0,357	0,8	0,396

FUTURE SCENARIOS: 1 regional climate model forced by 6 global climate models CMIP5


CLASS	RANGE
0-0,199	Very low
0,2 - 0,399	Low
0,4 - 0,599	Medium
0,6 - 0,799	High
0,8-1,000	Very high

RESULTS							
REJULI J			RCP4.5	RANKING -	STRONG WINDS		
		Obs	2030	2050	Observado	RCP8.5 2030	2050
	Imbituba	10	3°	3°	1°	3°	4°
	Santos	2°	2°	2°	2°	4°	
	Recife	2 3°	2 1°	1°	2 3°	-4 1º	1°
	Rio Grande	4°	5°	6°	4°	5°	11°
	Salvador	5°	4°	4°	5°	2°	2°
	Paranaguá	6°	6°	7°	6°	8°	9°
	Itaguaí	7°	7°	5°	7°	7°	7°
	Ilhéus	8°	8°	8°	8°	6°	6°
	São Francisco do Sul	9°	11°	12°	9°	12°	14°
	Rio de Janeiro	10°	10°	9°	10°	10°	13°
	Fortaleza	11°	9°	10°	11°	9°	8°
	São Sebastião	12°	15°	14°	12°	15°	16°
	Aratu-Candeias	13°	13°	15°	13°	13°	12°
	SUAPE	14°	16°	16°	14°	16°	15°
	Natal	15°	12°	11°	15°	11°	5°
	Cabedelo	16°	14°	13°	16°	14°	10°
	Itaqui	17°	17°	17°	17°	17°	17°
	Angra dos Reis	18°	18°	18°	18°	18°	18°
	Itajaí	19°	20°	21°	19°	21°	21°
	Niterói	20°	19°	19°	20°	19°	19°
	Vitória	21°	21 °	20°	21 °	20°	20°

CONSIDERATIONS

RESULTS

- Half of the ports already have a risk classified as "high"
- Under the moderate emissions scenario, 57% of the ports have a "high" or "very high" risk in 2030. In 2050, this increases to 67%
- Regarding the high emissions scenario, 76% may have a "high" or "very high" risk level in the 2050 period. Santos, Imbituba, Natal, Salvador and Recife may be the most affected
- Strong winds can lead to port standstill due to instability in equipment operations and closure of access to port

RESULTS - RISK INDEX FOR THUNDERSTORMS

			01-			RC	P4.5		RCP8.5			
Port	Е	v	O	bs.	20	30	20	50	2030		20	50
			Α	Ř	Α	Ř	Α	Ř	Α	Ř	Α	Ř
Angra dos Reis	0.5	0.3	0.6	0.283	0.6	0.285	0.6	0.282	0.6	0.277	0.6	0.284
Aratu-Candeias	0.8	0.5	0.8	0.993	0.8	1.000	0.8	0.992	0.8	0.977	0.8	0.977
Cabedelo	0.7	0.6	0.7	0.856	0.7	0.880	0.7	0.882	0.7	0.864	0.7	0.851
Fortaleza	0.7	0.5	0.5	0.509	0.5	0.537	0.5	0.544	0.5	0.536	0.5	0.553
llhéus	0.5	0.4	0.6	0.426	0.6	0.426	0.7	0.436	0.6	0.427	0.7	0.429
Imbituba	0.7	0.5	0.6	0.618	0.6	0.638	0.6	0.632	0.6	0.628	0.6	0.637
Itaguaí	0.8	0.3	0.5	0.397	0.5	0.406	0.5	0.401	0.5	0.401	0.5	0.410
Itajaí	0.6	0.3	0.6	0.308	0.6	0.312	0.6	0.308	0.6	0.304	0.6	0.309
Itaqui	0.8	0.3	0.4	0.292	0.4	0.319	0.4	0.333	0.4	0.318	0.5	0.349
Natal	0.7	0.5	0.8	0.792	0.8	0.793	0.8	0.809	0.7	0.788	0.7	0.766
Niterói	0.5	0.3	0.6	0.249	0.6	0.256	0.6	0.250	0.6	0.251	0.6	0.256
Paranaguá	0.9	0.4	0.6	0.661	0.6	0.666	0.6	0.663	0.6	0.658	0.6	0.670
Recife	0.7	0.4	0.8	0.750	0.8	0.779	0.8	0.774	0.8	0.787	0.8	0.767
Rio de Janeiro	0.8	0.3	0.6	0.481	0.6	0.494	0.6	0.483	0.6	0.484	0.6	0.495
Rio Grande	0.9	0.6	0.5	1.000	0.5	0.983	0.5	0.987	0.5	0.998	0.5	0.991
Salvador	0.7	0.3	0.8	0.461	0.8	0.464	0.8	0.462	0.8	0.456	0.8	0.458
Santos	1.0	0.3	0.6	0.627	0.6	0.636	0.6	0.622	0.6	0.620	0.6	0.639
São Francisco do Sul	0.7	0.6	0.6	0.792	0.6	0.801	0.6	0.791	0.6	0.785	0.6	0.798
São Sebastião	0.6	0.5	0.6	0.596	0.6	0.604	0.6	0.591	0.6	0.582	0.6	0.601
SUAPE	0.9	0.2	0.9	0.604	0.9	0.625	0.9	0.622	0.9	0.630	0.9	0.617
Vitória	0.8	0.3	0.6	0.398	0.6	0.400	0.6	0.394	0.6	0.393	0.6	0.394

CLASS	RANGE
0-0,199	Very low
0,2 - 0,399	Low
0,4 - 0,599	Medium
0,6 - 0,799	High
0,8-1,000	Very high

RESULTS	RANKING - THUNDERSTORMS						
		RCP4.5		RC	P8.5		
	Obs	2030	2050	2030	2050		
Rio Grande	1°	2°	2°	1°	1°		
Aratu-Candeias	2°	1°	1°	2°	2°		
Cabedelo	3°	3°	3°	3°	3°		
Natal	4°	5°	4°	4°	6°		
São Francisco do Sul	5°	4°	5°	6°	4°		
Recife	6°	6°	6°	5°	5°		
Paranaguá	7°	7 °	7 °	7°	7 °		
Santos	8°	9°	9°	10°	8°		
Imbituba	9°	8°	8°	9°	9°		
SUAPE	10°	10°	10°	8°	10°		
São Sebastião	11°	11°	11°	11°	11°		
Fortaleza	12°	12°	12°	12°	12°		
Rio de Janeiro	13°	13°	13°	13°	13°		
Salvador	14°	14°	14°	14°	14°		
Ilhéus	15°	15°	15°	15°	15°		
Vitória	16°	1 7 °	17°	17°	17°		
Itaguaí	17°	16°	16°	16°	16°		
Itajaí	18°	19°	19°	19°	19°		
Itaqui	19°	18°	18°	18°	18°		
Angra dos Reis	20°	20°	20°	20°	20°		
Niterói	21°	21°	21°	21°	21°		

RESULTS

CONSIDERATIONS

- In the current climate, 10 ports present a climate risk considered high or very high
- No considerable changes in the level of risk due to thunderstorm have been identified under the periods and scenarios analyzed
- Two ports may have the risk increased in the 2050 period under the high emissions scenario
- Thunderstorms can cause port standstill due to instability in equipment operations and closure of access to port, as well as floods, storm surges and operation shutdown of solid bulks

Port of Rio Grande - 09/13/2021

Access to the pier at Yara Terminal flooded

Pier at Yara Terminal flooded

Port of Santos - 09/16/2021 and 09/17/2021

Berth next to Suzano, paralyzed due to the rains.

TERMAG

5.3 SEA LEVEL RISE $\bullet \quad \bullet$

RESULTS - RISK INDEX FOR SEA LEVEL RISE

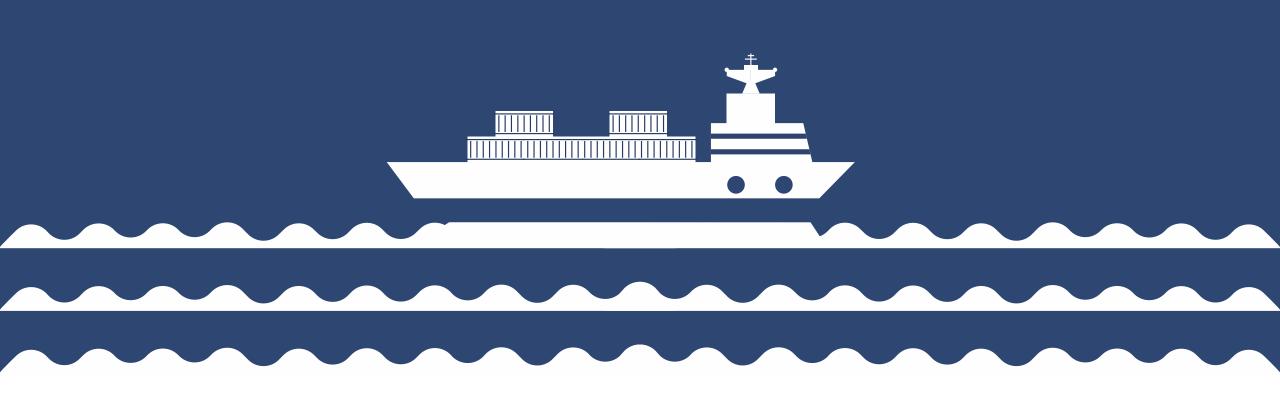
				RCF	94.5		RCP8.5					
Port	E	v	20	30	20	50	20	30	20	50		
			Α	A Ř		Ř	Α	Ř	Α	Ř		
Angra dos Reis	O,5	0,5	0,0	0,000	0,0	0,000	0,0	0,000	0,0	0,000		
Aratu-Candeias	0,8	0,6	1,0	1,000	1,0	1,000	1,0	1,000	1,0	1,000		
Cabedelo	0,7	0,5	1,0	0,640	1,0	0,640	1,0	0,640	1,0	0,640		
Fortaleza	0,7	0,6	1,0	0,778	1,0	0,778	1,0	0,778	1,0	0,778		
Ilhéus	O,5	0,4	1,0	0,499	1,0	0,499	1,0	0,499	1,0	0,499		
Imbituba	0,7	0,5	1,0	0,705	1,0	0,705	1,0	0,705	1,0	0,705		
Itaguaí	0,7	0,5	1,0	0,731	1,0	0,731	1,0	0,731	1,0	0,731		
Itajaí	0,6	O,1	1,0	0,127	1,0	0,127	1,0	0,127	1,0	0,127		
Itaqui	0,8	0,3	1,0	0,463	1,0	0,463	1,0	0,463	1,0	0,463		
Natal	0,7	0,3	1,0	0,416	1,0	0,416	1,0	0,416	1,0	0,416		
Niterói	0,4	0,4	0,0	0,000	0,0	0,000	0,0	0,000	0,0	0,000		
Paranaguá	0,9	0,4	1,0	0,834	1,0	0,834	1,0	0,834	1,0	0,834		
Recife	0,7	0,4	1,0	0,637	1,0	0,637	1,0	0,637	1,0	0,637		
Rio de Janeiro	0,8	0,4	0,0	0,000	0,0	0,000	0,0	0,000	0,0	0,000		
Rio Grande	0,9	0,5	1,0	0,963	1,0	0,963	1,0	0,963	1,0	0,963		
Salvador	0,7	0,3	1,0	0,471	1,0	0,471	1,0	0,471	1,0	0,471		
Santos	1,0	0,4	1,0	0,811	1,0	0,811	1,0	0,811	1,0	0,811		
São Francisco do Sul	0,7	0,6	1,0	0,805	1,0	0,805	1,0	0,805	1,0	0,805		
São Sebastião	0,6	0,6	1,0	0,678	1,0	0,678	1,0	0,678	1,0	0,678		
SUAPE	0,9	0,3	1,0	0,573	1,0	0,573	1,0	0,573	1,0	0,573		
Vitória	0,8	0,4	1,0	0,595	1,0	0,595	1,0	0,595	1,0	0,595		

CLASS	RANGE
0-0,199	Very low
0,2 – 0,399	Low
0,4 – 0,599	Medium
0,6 - 0,799	High
0,8 - 1,000	Very high

RESULTS		- SEA LEVEL RISE		
		CP4.5	RCF	
	2030	2050	2030	2050
Aratu-Candeias	1º	1°	1°	1º
Rio Grande	2°	2°	2°	2°
Paranaguá	3°	3°	3°	3°
Santos	4°	4°	4°	4°
São Francisco do Sul	5°	5°	5°	5°
Fortaleza	6°	6°	6°	6°
Itaguaí	7°	7°	7°	7°
Imbituba	8°	8°	8°	8°
São Sebastião	9°	9°	9°	9°
Cabedelo	10°	10°	10°	10°
Recife	11°	11°	11°	11°
Vitória	12°	12°	12°	12°
SUAPE	13°	13°	13°	13°
Ilhéus	14°	14°	14°	14°
Salvador	15°	15°	15°	15°
Itaqui	16°	16°	16°	16°
Natal	17°	17°	17°	17°
Itajaí	18°	18°	18°	18°
Angra dos Reis				
Niterói	19°	19°	19°	19°
Rio de Janeiro				

CONSIDERATIONS

- Sea level rise may already affect the ports in the upcoming decade
- 11 ports will have the risk of sea level rise classified as "very high" or "high" in 2050
- Sea level rise can cause damages to port infrastructure, and increase the frequency of floods, storm surges and coastal erosion



Port of Santos - 09/16/2021 and 09/17/2021

Sea Level Rise: SPA commented on the lack of freeboard readings between wharf structures, dolphins, bridges and tidal variation. Different ages and types of port structures. Examples of bridges to access dolphins and the railway bridge to access terminals in Guarujá.

6. ADAPTATION MEASURES

Measure	SLR	Thunder storms	Strong Winds	PDZ	% of ports that adopt the measure			
Adequacy of structures for new weather patterns	S	S	O	PIP	N/A			
Diversification of land connections to the port/ terminal	S	S	S	PIA	N/A			
Increase in the shelter infrastructure dimensions	S	S		PIP	N/A			
Construction of shelter infrastructure	Ø	S		PIP	N/A			
Reinforcement of rockfill structures	S			PIP	N/A			
Automation of logistical tasks		S		МО	N/A			
Implementation of VTMS		S		МО	4,76%			
Reinforcement of shelter infrastructure	\bigcirc			PIP	N/A	INITIALS	SIGNIFICANCE	
Raising of shelter infrastructure	S			PIP	N/A	МО	Operational Improvements	
Protection of cargoes against flooding				PIP/PRA	N/A		Port	
Inclusion of sea level rise projections in future infrastructure designs	S			МО	N/A	PIP	Investment Proposition	
							Area	

PRA

Reorganization Proposition

Adjustment of berth structures at sea level	S			PIP	N/A		
Increase in port elevation quota	S			PIP	N/A		
Expansion of the dredging process	S			MO	N/A		
Improved quality of access to the port/terminal	S			MO	N/A		
Consideration of sea level rise in infrastructure remodeling and replacement inventories	S			PIP	N/A		
Improvement in drainage systems		S		PIP	N/A		
Renovation of infrastructure or equipment vulnerable to flooding		S		PIP	N/A		
Consideration of watershed-level landscape planning and ecosystem-based adaptation				PIP	N/A	INITIALS	SIGNIFICANCE
options for flood risk reduction				PIP	N/A	МО	Operational
Implementation of SuDS				PIP	N/A		Improvements
Use of automatic wind monitors on ship loaders			V	МО	N/A	PIP	Port Investment
							Proposition

Area

PRA

Reorganization

Proposition

NON-STRUCTURAL ADAPTATION MEASURES

Measure	SLR	Thunder storms	Strong Winds	PDZ	Current scenario		
Provision of emergency plans to drivers	S	S	S	MG	N/A		
Review of contingency plans	S			MG	N/A		
Modification in the arrangement of structures in the organized port area	0	S	S	PRA	N/A		
Working together with insurance companies	S			MG	N/A		
Purchase of specific insurance against climate change	S			MG	0%		
Creating a network for sharing information	Ø			MG	N/A		
Holding meetings to discuss adaptation	S	S		MG	28,57%		
Addressing climate change in the port's strategic plan	Ø	S	\bigcirc	MG	28,57%		
Adoption of specific planning for climate change	S	S	O	MG	9,52%	INITIALS	SIGNIFICANCE
Including climate change adaptation in the budget	S			MG	4,76%	мо	Operational
Updating engineering design guidelines to meet new climate standards	S	O	O	MG	14,29%		Improvements
Record of impacts related to climate hazards (dates, consequences or costs)			O	MG	4,76%	MG	Management Improvements
Adoption of emergency action plans/evacuation protocol				MG	9,52%	PIP	Port Investment
Establishment of a crisis committee				MG	9,52%		Proposition
Implementation of its own continuous meteorological monitoring/Cooperation with other institutions	0	0	0	МО	23,81%	PRA	Area Reorganization Proposition
Carrying out operational-capacity assessments	S			МО	N/A		Proposition


NON-STRUCTUAL ADAPTATION MEASURES

Change of work schedule during extreme events	S	S	MG	N/A
Forming partnerships with local weather stations	S		MG	N/A
Adoption of good work practices	S	S	MG	N/A
Review of critical operational thresholds for cargo handling equipment	S	S	МО	N/A
Maintenance Program Review and Adjustment	S		MG	N/A
Engagement of stakeholders to plan flood management options	S		MG	N/A
Review of alert systems	S		MO	N/A
Adjustments to storm-sensitive cargo storage	S		MO	N/A
Use of exclusive PPE for flooded areas	S		MG	4,76%
Implementation of warning systems			МО	N/A
Implementation of wind speed prediction system			MO	N/A
Reduction of stacking height of containers			MO	N/A
Review of crane braking and fastening systems		S	MO	N/A
Review of conveyor belts, lighting systems and general infrastructure		0	МО	N/A
Equipment maintenance and contingency plan			MG	4,76%
Improvement of management for the prevention of windthunderstorm risks		0	MG	N/A
Monitoring of wind in the port/operational area		S	MO	4,76%
Monitoring of wind by lifting equipment			MO	N/A

INITIALS	SIGNIFICANCE
МО	Operational Improvements
MG	Management Improvements
PIP	Port Investment Proposition
PRA	Area Reorganization Proposition

- There is a need for regulation efforts
- Few ports implement adaptation measures. The most common are:
 - Hidro-meteorological monitoring
 - Addressing climate change in the strategic plan
 - Holding meetings to discuss adaptation
- No port reported the adoption of insurance

- Climate risk and adaptation assessments for ports are scarce
- There is no standard for recording climate-related impacts on Brazilian ports
- The Brazilian port sector is already suffering the effects of climate change, especially due to thunderstorms and strong winds
- The risks due to climate change are likely to increase in the future, especially due to strong winds and sea level rise
- Only few ports adopt any kind of climate change adaptation measure
- This study represents a major step towards the inclusion of the climate change adaptation topic in the port sector in Brazil
- This study will support the development of policies to guarantee the resilience of the port sector in Brazil, allowing for more focused regulation and inspection on this important issue.

- The participation and engagement of the port authorities were crucial to the success of this study
- The contributions of the National Institute for Space Research (INPE) was key to achieve the state-ofthe-art in developing climate change scenarios
- Do not rely only on climate model data. The use of observational data provided a more realistic condition of the current climate and risk level
- Strong winds and thunderstorms are difficult to model. There is a need for including more climate models in future assessments in order to estimate the uncertainties
- Although not reported by the ports, sea level rise should not be underestimated

AXIS 2

- Customized climate risk and adaptation assessments will be conducted at the port level for Santos, Rio Grande e Aratu-Candeias.
- These case studies will be the basis for developing a guideline for assessing climate risks and adaptation measures, which should be used and applied by all other ports
- Conclusion in July 2022

